Neurovascular and Neurometabolic Couplings in Dynamic Calibrated fMRI: Transient Oxidative Neuroenergetics for Block-Design and Event-Related Paradigms

نویسندگان

  • Fahmeed Hyder
  • Basavaraju G. Sanganahalli
  • Peter Herman
  • Daniel Coman
  • Natasja J. G. Maandag
  • Kevin L. Behar
  • Hal Blumenfeld
  • Douglas L. Rothman
چکیده

Functional magnetic resonance imaging (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping brain activity. Interest in quantitative fMRI has renewed awareness in importance of oxidative neuroenergetics, as reflected by cerebral metabolic rate of oxygen consumption(CMRO2), for supporting brain function. Relationships between BOLD signal and the underlying neurophysiological parameters have been elucidated to allow determination of dynamic changes inCMRO2 by "calibrated fMRI," which require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and volume (CBV). But how doCMRO2 changes, steady-state or transient, derived from calibrated fMRI compare with neural activity recordings of local field potential (LFP) and/or multi-unit activity (MUA)? Here we discuss recent findings primarily from animal studies which allow high magnetic fields studies for superior BOLD sensitivity as well as multi-modal CBV and CBF measurements in conjunction with LFP and MUA recordings from activated sites. A key observation is that while relationships between neural activity and sensory stimulus features range from linear to non-linear, associations between hyperemic components (BOLD, CBF, CBV) and neural activity (LFP, MUA) are almost always linear. More importantly, the results demonstrate good agreement between the changes inCMRO2 and independent measures of LFP or MUA. The tight neurovascular and neurometabolic couplings, observed from steady-state conditions to events separated by <200 ms, suggest rapid oxygen equilibration between blood and tissue pools and thus calibrated fMRI at high magnetic fields can provide high spatiotemporal mapping ofCMRO2 changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI.

Layer-specific neurophysiologic, hemodynamic, and metabolic measurements are needed to interpret high-resolution functional magnetic resonance imaging (fMRI) data in the cerebral cortex. We examined how neurovascular and neurometabolic couplings vary vertically in the rat's somatosensory cortex. During sensory stimulation we measured dynamic layer-specific responses of local field potential (LF...

متن کامل

Oxidative neuroenergetics in event-related paradigms.

Energetic basis of neural activity provides a solid foundation for noninvasive neuroimaging with calibrated functional magnetic resonance imaging (fMRI). Calculating dynamic changes in cerebral oxidative energy utilization (CMR(O(2))) is limited by uncertainties about whether or not the conventional blood oxygenation level-dependent (BOLD) model can be applied transiently using multimodal measu...

متن کامل

Simultaneous fPET and fMRI for Assessing Dynamic Neurovascular and Neurometabolic Changes

Purpose BOLD fMRI has been used extensively in neuroscience research. However, BOLD fMRI probes neural activity indirectly and the signal reflects a composite change of neurovascular (hemodynamic responses) and neurometabolic (aerobic or anaerobic glucose metabolism) coupling. Neuronal activations primarily engage oxidative phosphorylation are more difficult to be detected by BOLD fMRI than tho...

متن کامل

Event-related fMRI in cognition

A primary advantage of functional magnetic resonance imaging (fMRI) over other techniques in neuroscience is its flexibility. Researchers have used fMRI to study a remarkable diversity of topics, from basic processes of perception and memory, to the complex mechanisms of economic decision making and moral cognition. The chief contributor to this experimental flexibility-indeed, to the growth of...

متن کامل

The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals.

Data acquired with functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are often interpreted in terms of the underlying neuronal activity, despite mounting evidence that these signals do not always correlate with electrophysiological recordings. Therefore, considering the increasing popularity of functional neuroimaging, it is clear that a more comprehensive theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010